
Public-key Cryptography



What Is Cryptography?
• Cryptography -- from the Greek for 

“secret writing” -- is the mathematical 
“scrambling” of data so that only 
someone with the necessary key can 
“unscramble” it. 

• Cryptography allows secure 
transmission of private information over 
insecure channels (for example packet-
switched networks).

• Cryptography also allows secure 
storage of sensitive data on any 



Classical Cryptography:
Secret-Key or Symmetric Cryptography
• Alice and Bob agree on an encryption 

method and a shared key.
• Alice uses the key and the encryption 

method to encrypt (or encipher) a 
message and sends it to Bob.

• Bob uses the same key and the related 
decryption method to decrypt (or 
decipher) the message.



Advantages of Classical 
Cryptography

• There are some very fast classical 
encryption (and decryption) algorithms

• Since the speed of a method varies with 
the length of the key, faster algorithms 
allow one to use longer key values.

• Larger key values make it harder to guess 
the key value -- and break the code -- by 
brute force.



Disadvantages of Classical 
Cryptography

• Requires secure transmission of key 
value

• Requires a separate key for each group of 
people that wishes to exchange encrypted 
messages (readable by any group 
member)
– For example, to have a separate key for each 

pair of people, 100 people would need 4950 
different  keys.



Public-Key Cryptography: 
Asymmetric Cryptography

• Alice generates a key value (usually a 
number or pair of related numbers) 
which she makes public.   

• Alice uses her public key (and some 
additional information) to determine a 
second key (her private key).

• Alice keeps her private key (and the 
additional information she used to 
construct it) secret.



Public-Key Cryptography 
(continued)

• Bob (or Carol, or anyone else) can use 
Alice’s public key to encrypt a message for 
Alice.

• Alice can use her private key to decrypt 
this message.

• No-one without access to Alice’s private 
key (or the information used to construct it) 
can easily decrypt the message.



An Example: Internet 
Commerce

• Bob wants to use his credit card to buy 
some brownies from Alice over the 
Internet.

• Alice sends her public key to Bob.
• Bob uses this key to encrypt his credit-

card number and sends the encrypted 
number to Alice.

• Alice uses her private key to decrypt 
this message (and get Bob’s credit-card 
number).



Hybrid Encryption Systems

• All known public key encryption algorithms 
are much slower than the fastest secret-
key algorithms.

• In a hybrid system, Alice uses Bob’s 
public key to send him a secret shared 
session key.

• Alice and Bob use the session key to 
exchange information.



Internet Commerce 
(continued)

• Bob wants to order brownies from Alice 
and keep the entire transaction
private.

• Bob sends Alice his public key.
• Alice generates a session key, encrypts 

it using Bob’s public key, and sends it to 
Bob.

• Bob uses the session key (and an 
agreed-upon symmetric encryption 
algorithm) to encrypt his order, and 
sends it to Alice.



Digital Signatures:
Signing a Document

• Alice applies a (publicly known) hash 
function to a document that she wishes 
to “sign.” This function produces a 
digest of the document (usually a 
number).

• Alice then uses her private key to 
“encrypt” the digest.

• She can then send, or even broadcast, 
the document with the encrypted digest. 



Digital Signature Verification 
• Bob uses Alice’s public key to “decrypt” 

the digest that Alice “encrypted” with her 
private key.

• Bob applies the hash function to the 
document to obtain the digest directly.

• Bob compares these two values for the 
digest.  If they match, it proves that 
Alice signed the document and that no 
one else has altered it.



Secure Transmission of Digitally 
Signed Documents

• Alice uses her private key to digitally 
sign a document.  She then uses Bob’s 
public key to encrypt this digitally 
signed document.

• Bob uses his private key to decrypt the 
document.  The result is Alice’s digitally 
signed document.

• Bob uses Alice’s public key to verify 
Alice’s digital signature.



Historical Background

• 1976: W. Diffie and M.E. Hellman 
proposed the first public-key encryption 
algorithms -- actually an algorithm for 
public exchange of a secret key.

• 1978: L.M Adleman, R.L. Rivest and A. 
Shamir propose the RSA encryption 
method
– Currently the most widely used
– Basis for the spreadsheet used in the lab



The RSA Encryption Algorithm
• Use a random process to select two 

large prime numbers P and Q.  
Compute the product M = P*Q.  This 
number is called the modulus, and is 
made publicly available.
– RSA currently recommends a modulus 

that’s at least 768 bits long. 
• Also compute the Euler totient

T = (P-1)*(Q-1).  Keep this number (as 
well as P and Q) secret. 



RSA (continued)
• Randomly choose a public key E that 

has no factors in common with T = (P-
1)*(Q-1).

• Compute a private key D so that E*D
leaves a remainder of 1 when divided 
by T.
– We say E*D is congruent to 1 modulo T

• Note that D is easy to compute only if 
one knows the value of T.  This is 
essentially the same as knowing the 
values of P and Q.



RSA (continued)
• If N is any number that is not divisible 

by M, then dividing NE*D by M and 
taking the remainder yields the original 
value N.  
– This is a relatively deep mathematical 

theorem, which we can write as  NE*D mod 
M = N.)

• If N is a numeric encoding of a block of 
plaintext, the cyphertext is C = NE mod 
M.

• Then CD mod M  =  (NE)D mod M  = 
NE*D mod M =  N.  Thus, we can 



Why RSA Works

• Multiplying P by Q is easy: the number 
of operations depends on the number 
of bits (number of digits) in P and Q.

• For example, multiplying two 384-bit 
numbers takes approximately 
3842 = 147,456 bit operations



Why RSA Works (2)
• If one knows only M, finding  P and Q is 

hard: in essence, the number of 
operations depends on the value of M.
– The simplest method for factoring a 768-bit 

number takes about 2384  3.94 10115 trial 
divisions.

– A more sophisticated methods takes about 
285  3.87  1025 trial divisions.

– A still more sophisticated method takes 
about 241  219,000,000,000 trial divisions



Why RSA Works (3)

• No-one has found an really quick 
algorithm  for factoring a large number 
M.

• No-one has proven that such a quick 
algorithm doesn’t exist (or even that one 
is unlikely to exist).

• Peter Shor has devised a very fast 
factoring algorithm for a quantum 
computer, if anyone manages to build 
one.




















