
Public-key Cryptography

What Is Cryptography?
• Cryptography -- from the Greek for

“secret writing” -- is the mathematical
“scrambling” of data so that only
someone with the necessary key can
“unscramble” it.

• Cryptography allows secure
transmission of private information over
insecure channels (for example packet-
switched networks).

• Cryptography also allows secure
storage of sensitive data on any

Classical Cryptography:
Secret-Key or Symmetric Cryptography
• Alice and Bob agree on an encryption

method and a shared key.
• Alice uses the key and the encryption

method to encrypt (or encipher) a
message and sends it to Bob.

• Bob uses the same key and the related
decryption method to decrypt (or
decipher) the message.

Advantages of Classical
Cryptography

• There are some very fast classical
encryption (and decryption) algorithms

• Since the speed of a method varies with
the length of the key, faster algorithms
allow one to use longer key values.

• Larger key values make it harder to guess
the key value -- and break the code -- by
brute force.

Disadvantages of Classical
Cryptography

• Requires secure transmission of key
value

• Requires a separate key for each group of
people that wishes to exchange encrypted
messages (readable by any group
member)
– For example, to have a separate key for each

pair of people, 100 people would need 4950
different keys.

Public-Key Cryptography:
Asymmetric Cryptography

• Alice generates a key value (usually a
number or pair of related numbers)
which she makes public.

• Alice uses her public key (and some
additional information) to determine a
second key (her private key).

• Alice keeps her private key (and the
additional information she used to
construct it) secret.

Public-Key Cryptography
(continued)

• Bob (or Carol, or anyone else) can use
Alice’s public key to encrypt a message for
Alice.

• Alice can use her private key to decrypt
this message.

• No-one without access to Alice’s private
key (or the information used to construct it)
can easily decrypt the message.

An Example: Internet
Commerce

• Bob wants to use his credit card to buy
some brownies from Alice over the
Internet.

• Alice sends her public key to Bob.
• Bob uses this key to encrypt his credit-

card number and sends the encrypted
number to Alice.

• Alice uses her private key to decrypt
this message (and get Bob’s credit-card
number).

Hybrid Encryption Systems

• All known public key encryption algorithms
are much slower than the fastest secret-
key algorithms.

• In a hybrid system, Alice uses Bob’s
public key to send him a secret shared
session key.

• Alice and Bob use the session key to
exchange information.

Internet Commerce
(continued)

• Bob wants to order brownies from Alice
and keep the entire transaction
private.

• Bob sends Alice his public key.
• Alice generates a session key, encrypts

it using Bob’s public key, and sends it to
Bob.

• Bob uses the session key (and an
agreed-upon symmetric encryption
algorithm) to encrypt his order, and
sends it to Alice.

Digital Signatures:
Signing a Document

• Alice applies a (publicly known) hash
function to a document that she wishes
to “sign.” This function produces a
digest of the document (usually a
number).

• Alice then uses her private key to
“encrypt” the digest.

• She can then send, or even broadcast,
the document with the encrypted digest.

Digital Signature Verification
• Bob uses Alice’s public key to “decrypt”

the digest that Alice “encrypted” with her
private key.

• Bob applies the hash function to the
document to obtain the digest directly.

• Bob compares these two values for the
digest. If they match, it proves that
Alice signed the document and that no
one else has altered it.

Secure Transmission of Digitally
Signed Documents

• Alice uses her private key to digitally
sign a document. She then uses Bob’s
public key to encrypt this digitally
signed document.

• Bob uses his private key to decrypt the
document. The result is Alice’s digitally
signed document.

• Bob uses Alice’s public key to verify
Alice’s digital signature.

Historical Background

• 1976: W. Diffie and M.E. Hellman
proposed the first public-key encryption
algorithms -- actually an algorithm for
public exchange of a secret key.

• 1978: L.M Adleman, R.L. Rivest and A.
Shamir propose the RSA encryption
method
– Currently the most widely used
– Basis for the spreadsheet used in the lab

The RSA Encryption Algorithm
• Use a random process to select two

large prime numbers P and Q.
Compute the product M = P*Q. This
number is called the modulus, and is
made publicly available.
– RSA currently recommends a modulus

that’s at least 768 bits long.
• Also compute the Euler totient

T = (P-1)*(Q-1). Keep this number (as
well as P and Q) secret.

RSA (continued)
• Randomly choose a public key E that

has no factors in common with T = (P-
1)*(Q-1).

• Compute a private key D so that E*D
leaves a remainder of 1 when divided
by T.
– We say E*D is congruent to 1 modulo T

• Note that D is easy to compute only if
one knows the value of T. This is
essentially the same as knowing the
values of P and Q.

RSA (continued)
• If N is any number that is not divisible

by M, then dividing NE*D by M and
taking the remainder yields the original
value N.
– This is a relatively deep mathematical

theorem, which we can write as NE*D mod
M = N.)

• If N is a numeric encoding of a block of
plaintext, the cyphertext is C = NE mod
M.

• Then CD mod M = (NE)D mod M =
NE*D mod M = N. Thus, we can

Why RSA Works

• Multiplying P by Q is easy: the number
of operations depends on the number
of bits (number of digits) in P and Q.

• For example, multiplying two 384-bit
numbers takes approximately
3842 = 147,456 bit operations

Why RSA Works (2)
• If one knows only M, finding P and Q is

hard: in essence, the number of
operations depends on the value of M.
– The simplest method for factoring a 768-bit

number takes about 2384  3.94 10115 trial
divisions.

– A more sophisticated methods takes about
285  3.87  1025 trial divisions.

– A still more sophisticated method takes
about 241  219,000,000,000 trial divisions

Why RSA Works (3)

• No-one has found an really quick
algorithm for factoring a large number
M.

• No-one has proven that such a quick
algorithm doesn’t exist (or even that one
is unlikely to exist).

• Peter Shor has devised a very fast
factoring algorithm for a quantum
computer, if anyone manages to build
one.

