Public-key Cryptography

What Is Cryptography?

o Cryptography -- from the Greek for
“secret writing” -- Is the mathematical
“scrambling” of data so that only
someone with the necessary key can
“unscramble” it.

 Cryptography allows secure
transmission of private information over
Insecure channels (for example packet-
switched networks).

* Cryptography also allows secure
storage of sensitive data on any

Classical Cryptography:
Secret-Key or Symmetric Cryptography

« Alice and Bob agree on an encryption
method and a shared key.

* Alice uses the key and the encryption
method to encrypt (or encipher) a
message and sends it to Bob.

 Bob uses the same key and the related
decryption method to decrypt (or
decipher) the message.

Advantages of Classical
Cryptography

 There are some very fast classical
encryption (and decryption) algorithms

e Since the speed of a method varies with
the length of the key, faster algorithms
allow one to use longer key values.

e Larger key values make It harder to guess
the key value -- and break the code -- by
brute force.

Disadvantages of Classical
Cryptography

 Requires secure transmission of key
value

 Requires a separate key for each group of
people that wishes to exchange encrypted

messages (readable by any group
member)

— For example, to have a separate key for each

pair of people, 100 people would need 4950
different keys.

Public-Key Cryptography:
Asymmetric Cryptography

* Alice generates a key value (usually a
number or pair of related numbers)
which she makes public.

* Alice uses her public key (and some
additional information) to determine a
second key (her private key).

* Alice keeps her private key (and the
additional information she used to
construct it) secret.

Public-Key Cryptography
(continued)

 Bob (or Carol, or anyone else) can use

Alice’s public key to encrypt a message for
Alice.

« Alice can use her private key to decrypt
this message.

* No-one without access to Alice’s private

key (or the information used to construct it)
can easily decrypt the message.

An Example: Internet

Commerce
Bob wants to use his credit card to buy
some brownies from Alice over the
Internet.

Alice sends her public key to Bob.

Bob uses this key to encrypt his credit-
card number and sends the encrypted
number to Alice.

Alice uses her private key to decrypt
this message (and get Bob’s credit-card

number).

Hybrid Encryption Systems

 All known public key encryption algorithms
are much slower than the fastest secret-
key algorithms.

* In a hybrid system, Alice uses Bob’s
public key to send him a secret shared
session key.

* Alice and Bob use the session key to
exchange information.

Internet Commerce

(continued)
Bob wants to order brownies from Alice

and keep the entire transaction
private.

Bob sends Alice his public key.

Alice generates a session key, encrypts
It using Bob’s public key, and sends it to
Bob.

Bob uses the session key (and an
agreed-upon symmetric encryption
algorithm) to encrypt his order, and

Digital Signatures:
Signing a Document

* Alice applies a (publicly known) hash
function to a document that she wishes
to “sign.” This function produces a
digest of the document (usually a
number).

* Alice then uses her private key to
“encrypt” the digest.

e She can then send, or even broadcast,
the document with the encrypted digest.

Digital Signature Verification

 Bob uses Alice’s public key to “decrypt”
the digest that Alice “encrypted” with her
private key.

 Bob applies the hash function to the
document to obtain the digest directly.

 Bob compares these two values for the
digest. If they match, it proves that
Alice signed the document and that no
one else has altered It.

Secure Transmission of Digitally
Signed Documents

« Alice uses her private key to digitally
sign a document. She then uses Bob’s
public key to encrypt this digitally
sighed document.

 Bob uses his private key to decrypt the
document. The result is Alice’s digitally
sighed document.

 Bob uses Alice’s public key to verify
Alice’s digital signature.

Historical Background

e 1976: W. Diffie and M.E. Hellman
proposed the first public-key encryption
algorithms -- actually an algorithm for
public exchange of a secret key.

e 1978: L.M Adleman, R.L. Rivest and A.
Shamir propose the RSA encryption
method

— Currently the most widely used
— Basis for the spreadsheet used in the lab

The RSA Encryption Algorithm

 Use a random process to select two
large prime numbers P and Q.
Compute the product M = P*Q. This
number Is called the modulus, and Is
made publicly available.
— RSA currently recommends a modulus

that’s at least 768 bits long.

* Also compute the Euler totient
T =(P-1)*(Q-1). Keep this number (as
well as P and Q) secret.

RSA (continued)

« Randomly choose a public key E that
has no factors in common with T = (P-
1)*(Q-1).

 Compute a private key D so that E*D
leaves a remainder of 1 when divided
by T.

—We say E*D is congruent to 1 modulo T

 Note that D Is easy to compute only if
one knows the value of T. This s
essentially the same as knowing the

RSA (continued)

If N Is any number that is not divisible
by M, then dividing NP by M and
taking the remainder yields the original
value N.

— This Is a relatively deep mathematical

theorem, which we can write as NE'P mod
M =N.)

If N Is a numeric encoding of a block of

plaintext, the cyphertext is C = NEmod

M

ThenCPmod M = (NE)P mod M =

NIE*DY oo — 1 AR [\ .. -~ i im e e am

Why RSA Works

o Multiplying P by Q Is easy: the number
of operations depends on the number
of bits (number of digits) in P and Q.

* For example, multiplying two 384-bit
numbers takes approximately
3842= 147,456 bit operations

Why RSA Works (2)

 If one knows only M, finding P and Q is
hard: in essence, the number of
operations depends on the value of M.

— The simplest method for factoring a 768-bit
number takes about 2384~ 3.94 §1011° trial
divisions.

— A more sophisticated methods takes about
285~ 3.87 B 102 trial divisions.

— A still more sophisticated method takes
about 241 ~ 219,000,000,000 trial divisions

Why RSA Works (3)

 No-one has found an really quick
algorithm for factoring a large number
M.

 No-one has proven that such a quick
algorithm doesn’t exist (or even that one
IS unlikely to exist).

 Peter Shor has devised a very fast
factoring algorithm for a quantum
computer, If anyone manages to build
one.

Error Detection

There will always be errors

How te measure the errors - Bit Error Rate (BER)
- Probability of an eror

Single and burst emrors

Error Detection
- For & given frame of bits, sdditionsl bits that consticute an
error-detecting code are added by the ransmitter
= The code iz caleulsted a2 & Function of the other
transmitted bits
= The receiver performs the same calculation and compares
tha rasults

Error Detection

Therse will always be errors

How to measure the errars - Bit Error Rate (BER)
- Probability of an ermor

Single and burst errors

Error Datection
- For a given frame of bits, additional bits that constitute an
error-detecting code are added by the transmitter
- The code is caloulated as a function of the other
transmittec bits

- The receiver performs the same calculation and compares
the results

ol e —

Error Accumulation over
multiple hops

¢ Attenuation / Regeneration
o Amplifiers vs. repeaters

e Errors accumulate over multiple hops
* Regeneration is necessary

- .,

noise noise

Error Detection Methods

« Parity
e Block Sum Check
« Cyclic Redundancy Check

Parnty
* Valus of parity bit is

such that character has s

even (even parity) or

add [odd parity) 1001001 1 (Even Parity)
number of 1's 1001001 0 (Odd Parity)

Even number of bit
arrors is not detected

Block Sum Check

Iransmis sion

L - &=

O

- S

=

=

(ppo) spq Aued moy

Column parity bits (even)

Block Sum Check

Each character in the block 15 assignad 2 panty bit

In addition, a party bit i1s calculated across all the
characters - one for each bit position

The resulting set of panty bits 15 the block check
character

Detects multiple errors

Cyclic Redundancy Check -
Polynomial Codes

« Datecting strings of errors

« For 2 block of k bits transmitter generates n
bit sequence

o Transmit k+n bits which 15 exactly divisible by
some number

« Receive divides frame by the same number

= If no remainder, assume no emor

Error Correction

* The |loss of even a single bit can have
potentially catastrophic consequences

« Two basic approaches :

- Forward Error Control (there iz additional infa

in each character which can help the receiver to
create the correct data)

- Feedback Error Control (zdditional infa
detects the error and then retransmission scheme is

deployed)

Error Correction

» Forward Error Correction
- Rarely used in data transmission

= Uszed when retransmizsion |3 not practical =
broadcast transmission

- The recsiver is correcting the code
= Example - Hamming code

« Feadback Error Correction
- Described before

- Automatic Repeat Request (ARQ): Stop and Wait, Go
Back N, Selective Rapaeat

